3.186 \(\int \frac{\sqrt{1-4 x^2}}{\sqrt{2-3 x^2}} \, dx\)

Optimal. Leaf size=20 \[ \frac{E\left (\sin ^{-1}\left (\sqrt{\frac{3}{2}} x\right )|\frac{8}{3}\right )}{\sqrt{3}} \]

[Out]

EllipticE[ArcSin[Sqrt[3/2]*x], 8/3]/Sqrt[3]

________________________________________________________________________________________

Rubi [A]  time = 0.0070226, antiderivative size = 20, normalized size of antiderivative = 1., number of steps used = 1, number of rules used = 1, integrand size = 23, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.043, Rules used = {424} \[ \frac{E\left (\sin ^{-1}\left (\sqrt{\frac{3}{2}} x\right )|\frac{8}{3}\right )}{\sqrt{3}} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[1 - 4*x^2]/Sqrt[2 - 3*x^2],x]

[Out]

EllipticE[ArcSin[Sqrt[3/2]*x], 8/3]/Sqrt[3]

Rule 424

Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Simp[(Sqrt[a]*EllipticE[ArcSin[Rt[-(d/c)
, 2]*x], (b*c)/(a*d)])/(Sqrt[c]*Rt[-(d/c), 2]), x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] && GtQ[
a, 0]

Rubi steps

\begin{align*} \int \frac{\sqrt{1-4 x^2}}{\sqrt{2-3 x^2}} \, dx &=\frac{E\left (\sin ^{-1}\left (\sqrt{\frac{3}{2}} x\right )|\frac{8}{3}\right )}{\sqrt{3}}\\ \end{align*}

Mathematica [A]  time = 0.0045136, size = 20, normalized size = 1. \[ \frac{E\left (\sin ^{-1}\left (\sqrt{\frac{3}{2}} x\right )|\frac{8}{3}\right )}{\sqrt{3}} \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[1 - 4*x^2]/Sqrt[2 - 3*x^2],x]

[Out]

EllipticE[ArcSin[Sqrt[3/2]*x], 8/3]/Sqrt[3]

________________________________________________________________________________________

Maple [A]  time = 0.02, size = 29, normalized size = 1.5 \begin{align*} -{\frac{\sqrt{2}}{12} \left ( 5\,{\it EllipticF} \left ( 2\,x,1/4\,\sqrt{6} \right ) -8\,{\it EllipticE} \left ( 2\,x,1/4\,\sqrt{6} \right ) \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((-4*x^2+1)^(1/2)/(-3*x^2+2)^(1/2),x)

[Out]

-1/12*2^(1/2)*(5*EllipticF(2*x,1/4*6^(1/2))-8*EllipticE(2*x,1/4*6^(1/2)))

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{-4 \, x^{2} + 1}}{\sqrt{-3 \, x^{2} + 2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-4*x^2+1)^(1/2)/(-3*x^2+2)^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt(-4*x^2 + 1)/sqrt(-3*x^2 + 2), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (-\frac{\sqrt{-3 \, x^{2} + 2} \sqrt{-4 \, x^{2} + 1}}{3 \, x^{2} - 2}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-4*x^2+1)^(1/2)/(-3*x^2+2)^(1/2),x, algorithm="fricas")

[Out]

integral(-sqrt(-3*x^2 + 2)*sqrt(-4*x^2 + 1)/(3*x^2 - 2), x)

________________________________________________________________________________________

Sympy [A]  time = 4.34122, size = 34, normalized size = 1.7 \begin{align*} \begin{cases} \frac{\sqrt{3} E\left (\operatorname{asin}{\left (\frac{\sqrt{6} x}{2} \right )}\middle | \frac{8}{3}\right )}{3} & \text{for}\: x > - \frac{\sqrt{6}}{3} \wedge x < \frac{\sqrt{6}}{3} \end{cases} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-4*x**2+1)**(1/2)/(-3*x**2+2)**(1/2),x)

[Out]

Piecewise((sqrt(3)*elliptic_e(asin(sqrt(6)*x/2), 8/3)/3, (x > -sqrt(6)/3) & (x < sqrt(6)/3)))

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{-4 \, x^{2} + 1}}{\sqrt{-3 \, x^{2} + 2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-4*x^2+1)^(1/2)/(-3*x^2+2)^(1/2),x, algorithm="giac")

[Out]

integrate(sqrt(-4*x^2 + 1)/sqrt(-3*x^2 + 2), x)